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1. Introduction



1.1 What does “serverless” mean?
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a) Serverless Architecture

Serverless Architecture
• multiple backends
• might span different cloud providers
• transparent and automatic scaling 
• specific backend servers unknown

Sources: [1]



1.1 What does “serverless” mean?
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b) Serverless as cloud-computing execution model

called “serverless computing” and
commodified as “Function as a Service”

Sources: [1]



1.1 What does “serverless” mean?

public | Richard Clauß | Serverless Computing 7

b) Serverless as cloud-computing execution model

called “serverless computing” and
commodified as “Function as a Service”

Are serverless functions just smaller pieces of Microservices?

Sources: [1]



1.1 What does “serverless” mean?
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Which are then run on a runtime like usual PaaS Containers?

b) Serverless as cloud-computing execution model

called “serverless computing” and
commodified as “Function as a Service”

Sources: [1]



1.1 What does “serverless” mean?
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Which are then run on a runtime like usual PaaS Containers?

Are serverless functions just smaller pieces of Microservices?

Sources: [1]

Yes, serverless functions are usually small fast starting CRI containers,
        but the technology in general does not demand that



1.2 Attempt to find the main properties of serverless computing
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Scales transparently, 
horizontally, automatically
and often down to zero

Different event 
sources possible

May be kernel packet queue

Broadest thinkable serverless computing definition: 
“Horizontally automatically scaling programs are executed in response to events”



1.3 FaaS vs. PaaS
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How are PaaS and FaaS different if both are containers?

Sources: [1]



1.3 FaaS vs. PaaS
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Function as a Service
• Runs containers (usually)
• Short lived = ephemeral = transient
• Stateless
• Scales automatically
• Event-driven → executed when triggered
• Can have side effects

Platform as a Service
• Runs containers (or on other runtimes)
• Long running (usually)
• Stateless or stateful
• Scales by configuration
• Event-driven or permanently running
• Can have side effects

Sources: [1]

implicit 
need for
small size

Main benefits of serverless computing:
- More tasks automatically shifted to the cloud compared to PaaS
- Transparent automatic horizontal scaling makes the technology appear “serverless”
- In public clouds finely granular on-demand billing based on milliseconds execution time
- In public clouds no cost because of scale-to-zero



1.4 AWS Lambda Example
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1.4 AWS Lambda Example
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1.4 AWS Lambda Example
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1.4 AWS Lambda Example
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Function Logs first invocation
START RequestId: df51350a-dd12-46dd-95d0-d23ba7c524cd Version: $LATEST

END RequestId: df51350a-dd12-46dd-95d0-d23ba7c524cd

REPORT 
RequestId: df51350a-dd12-46dd-95d0-d23ba7c524cd
Duration: 1.32 ms
Billed Duration: 2 ms
Memory Size: 128 MB
Max Memory Used: 50 MB
Init Duration: 132.34 ms

Request ID
df51350a-dd12-46dd-95d0-d23ba7c524cd

not billed

REPORT for second invocation:
Duration: 0.89 ms
Billed Duration: 1 ms
(“Init Duration” disappeared)

billed



http request

http request

1.4 AWS Lambda Example
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User AgentAPI-Gateway

AWS Lambda
AWS Lambda 

Function

json input json output
AWS Lambda

http response

API-Gateway

http response



1.5 Monoliths as serverless function
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Example request to AWS Lambda:

One function can handle multiple subpaths
→ monolith possible in just one function



1.6 AWS Lambda Function
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● App Name
● Function Name
● Memory Limit
● Amazon Features (Log Group, etc.)
● Custom Environment variables

Event = json Input Context

json output



using

1.7 Software and Providers
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Commercial

● Amazon AWS Lambda

● IBM Cloud Functions

● Oracle Cloud Functions

● Google Cloud Functions

● Microsoft Azure Functions

● Cloudflare Workers

● Vercel Cloud Functions

● Tencent Cloud Functions

Open Source

● OpenWhisk (Apache-2.0 License)

● Fn (Apache-2.0 License)

● Knative (Apache-2.0 License)

● OpenFaaS (MIT License)

● Kubeless (Apache-2.0 License)

● Fission (Apache-2.0 License)

using



2. Triggers



2.1 Triggers in Amazon AWS Lambda

public | Richard Clauß | Serverless Computing 24

Invoke functions on Database updates

Consume real time data streams

Amazon AWS Lambda is highly integrated into the AWS Service Portfolio, Event Sources include:

Trigger on File manipulations in Object Storage

Sources: [2]

Message Queues and Work Queues

Amazon MQ -> Amazon MSK

External Events via Amazon EventBridge Scheduled Events (Cronjob) via CloudWatch Events

Amazon EventBridge Amazon EventBridge CloudWatch



2.2 Webhooks as event source
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a) Webhooks

Sources: [3]

“Telegram, send me a http request, if my 
bot received a new message”



2.3 Polling as event source
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b) Polling

Sources: [3]

for example polling an RSS feed every 10 minutes



2.4 Permanent connections as event source
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c) Connections Pattern

Sources: [3]

for example subscribing to an mqtt topic
(permanently running)



2.5 Any protocol can be connected to serverless computing
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Conclusion
● There are patterns to connect any stateless and stateful protocol to 

serverless computing
● But this may result in performance penalties 

or the necessity of a permanently running component



2.6 Synchronous and asynchronous invocations

public | Richard Clauß | Serverless Computing 29Sources: [4]

Synchronous Invocation
● Blocks until result is available

Sync Example (OpenWhisk)
wsk action invoke \
   /whisk.system/samples/greeting --result --blocking
{
    "payload": "Hello, World!"
}

Asynchronous Invocation
● Returns immediately and gives an 

Activation ID
● Client can retrieve result later

Async Example (OpenWhisk)
wsk action invoke \
   /whisk.system/samples/greeting
ok: invoked /_/pythonfunction with id 
733404104295414ab404104295c14ae2



3. Interfaces to 
functions
(Programmers point of view)



3.1 Interfaces to functions
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Question: How do programmers receive function invocations?

→ Answer depends on serverless computing implementation



3.2 Language-native map-like data structures
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AWS Lambda

json input json output
AWS Lambda

Used in: OpenWhisk, AWS Lambda

a) Platform translates incoming events to json objects



3.2 Language-native map-like data structures
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b) json objects are then deserialized to language-native map-like data structures

Go example from OpenWhisk:



3.3 json over file descriptors (for example stdin and stdout)
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stdin stdout

Used in: OpenWhisk, OpenFaas

→ Arbitrary executables and bash scripts can be used as serverless functions

Executable



3.4 Language-specific runtime SDK
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Used in: Fn, OpenFaas

Example from fn project:



3.5 Function receives http-requests on tcp port
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http request

http response

Used in: Knative

Function is containerized web-server

port
8080

→ Developers can use their favourite web-server libraries
     (In my opinion the most modern approach)
→ Function invocation is no additional layer of complexity

Client



3.6 Software abstraction to well-known webserver library

public | Richard Clauß | Serverless Computing 37

Used in: Fission, OpenFaas, Knative functions → Developers can use their favourite web-server libraries
     (In my opinion the most modern approach)
→ abstraction needs to implement runtime specification,
     which is sometimes not as trivial as with knative



3.7 Summary for the function invocation interfaces
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Summary
● There are many different ways how programmers receive function invocations
● Letting programmers use well-known web-server libraries in their favourite 

language is the most modern approach used in fission, knative and openfaas



4. Runtimes



4.1 Deployment unit
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There are two observed possibilities:
A) Function is deployed as a container image
B) Function is deployed as source-code file or archive containing source-code files

In case B, generic runtime containers are specialized with function code at runtime
→ Initialization effort contributes to cold-start time
→ Building a container image in the cluster after deployment would also be possible

Specialization
can not change

specialized 
runtimes can’t be 
reused for other 
functions



4.2 Runtimes for programming languages
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Runtimes are usually created at the level of programming languages

Official Fission “Environments”

→ Runtimes usually provide a few common libraries



4.3 OpenWhisk Python Runtime
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(Code slightly shortened version of the original 
OpenWhisk Python Runtime Implementation

Sources: [5]



4.3 OpenWhisk Python Runtime
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4.4 Consequences of OpenWhisks Implementation
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Consequences of OpenWhisks Implementation
• Json is already parsed to native data structures
• Deserialization and Serialization means overhead

• One runtime serves exactly one action
• Runtimes can’t be reused to serve other actions

• Reexecuting same function is fast (warm start)
• First execution is delayed (cold start)



4.5 Limitations
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Introduced Problem:
Programmers need to take limitations 
into account which are specific to the 
used runtime and software

Limitations in AWS Lambda:
● unlimited concurrency

(function scale first to region dependent 
500-3000 concurrent instances, then 500 more 
each minute)

● 10240 MiB max memory usage (def: 128 MiB)
● 900 sec max execution time (def: 3 sec)
● 6 MiB synchronous invocation payload
● 256 KiB asynchronous invocation payload

Sources: [6]

Limitations in OpenWhisk:

→ payload limits make some use cases hard to implement



4.6 Extending Runtimes
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Extend Python Runtimes in OpenWhisk
1)  virtualenv virtualenv
2) source virtualenv/bin/activate
3) pip install  <dependency>
4) zip -r helloPython.zip virtualenv __main__.py
5) wsk action create helloPython --kind python:3 helloPython.zip

           faas_project
           ├── hello.py
           └── virtualenv

Sources: [7,8]

Runtimes can be extended
• Add new container layers
• Provide libraries in deployments



4.7 Relationship between serverless computing and container orchestration
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● Scaling the number of runtime containers requires interfacing with container orchestration
● Most Self-Hosted serverless software supports                               natively

FaaS
Software

Kubernetes
Support

Helm Chart 
available

OpenWhisk

Fn

Kubeless

OpenFaas

→ Other supported platforms are highly implementation dependent
→ Fission and Knative are integrated into Kubernetes with Custom Resource Definitions



4.8 Interface to runtime and whether it supports concurrent invocations
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The serverless platform can of course handle more than one concurrent request.

So why does it matter if a function can be invoked concurrently multiple times for a single runtime?
→ Soft limits make it possible to completely avoid cold-starts during scaling out

 → Requests can be immediately answered without waiting for a new pod to 
               become available, if runtimes can always tolerate one more request



5. Cold starts



5.1 Cold- and warm-starts
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Occurrence of cold-starts
● a) When no function instances are running

○ after scale-to-zero, failure or deployment
● b) During scaling out if all present function instances can’t serve more requests.

Cold-start
● Before a function invocation can be processed, a new function instance needs to be started 

→ cold-start delay = initialization time + execution time

Warm-start
● The invocation can be forwarded to an already existing function instance with free capacity 

→ warm-start delay = execution time



5.2 Avoiding cold-starts
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Occurrence of cold-starts
● a) When no function instances are running

○ after scale-to-zero, failure or deployment
● b) During scaling out if all present function instances can’t serve more requests.

Avoid case a)
● disable scale-to zero

and
● set minimum/initial number of function instances >= 1



5.2 Avoiding cold-starts
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Occurrence of cold-starts
● a) When no function instances are running

○ after scale-to-zero, failure or deployment
● b) During scaling out if all present function instances can’t serve more requests.

Avoid case b)
● always have more function instances than needed

○ so there is always an idling function instance available
 to process an event immediately

or
● have function instances, which support concurrent function invocations

          and do not set a hard-limit for concurrency
○ by using a soft-limit always one more invocation can be processed immediately
○ scaling is detached from function invocation and happens in the background

(“eventual scaling”)



5.3 Cold- vs. Prewarm- vs. Warm-start
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What needs to be done?

-> prewarming only possible when generic containers are specialized



5.4 Prewarm containers in OpenWhisk
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OpenWhisks invoker launches prewarm containers to accelerate cold starts



6. Keeping state



6.1 Why serverless functions need to be stateless
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Platform can scale down automatically and transparently
● Content of memory can be removed any time

     → State needs to be externalized
     → Memory is still usable for temporary caching



6.2 Externalize state
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Advantages
● Modular development of storage API
● Separated administration
● Separated scalability

Disadvantages
● Might need additional complexity like 

locking mechanisms or ACID 
transactions

External storage API

→ Suitable solution



6.3 Suitable database and storage APIs for FaaS
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Properties of database APIs suitable for use with serverless computing
● Pay-per-use
● Stateless
● Fast (AWS bills idling)

○ No expensive handshakes
○ Sacrifice database normalization for speed

● Automatic Scaling
   → Same properties like those of FaaS functions themselves



6.4 AWS Aurora Provisioned vs. Serverless

59

Different pricing
+ Autoscales up and down
+ Stateless http “Data API”

• Relational Database
• Drop-In Replacement for MySQL and PostgreSQL

Amazon AWS Aurora

Billing:
• storage (per GiB/month)
• I/O rate (per 1 Mio req)
• instance size (per hour)
  (e.g. db.t3.medium = 0,082 USD/h)

Billing for
• storage (per GiB/month)
• I/O rate (per 1 Mio req)
• Aurora Capacity Unit (per hour)
  (1 ACU ~ 2GiB Memory usage)

AWS Aurora - Provisioned AWS Aurora - Serverless

Differences in Serverless

public | Richard Clauß | Serverless Computing



6.5 Actors model
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Actor Model

● Actor1 has an internal state
● Access to that internal state 

only via messages



6.6 Entity functions
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Entity functions Ways to communicate
Signaling: fire-and-forget 

→ write operations without confirmation

Call: blocking call, waiting for response
→ read and write operations

          (identical to normal synchronous APIs)● Entity functions have a persistent state
● Access to internal state only via event-driven messages
● Backend can be normal storage API

     (Practical example: Azure Functions Durable Entities)



6.7 Serverless computing platforms as entity functions
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Serverless platforms together with asynchronous invocations can be 
programmed to be an implementation of entity functions



6.8 Message-broker for asynchronous invocations
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Not all platforms support asynchronous invocations
- But all platforms can be configured to receive events from a message broker



6.8 Message-broker for asynchronous invocations
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Connecting a message broker to add the feature of 
asynchronous invocations to a serverless platform

→ Also a possible implementation of entity functions



6.9 Store data using in a platform-native workflow system
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Advantages
● Function instances use less 

memory
● Implicit garbage collection
● No double-billing if workflows 

are ST-safe (explained later)

Disadvantages
● Code needs to be platform 

aware
● Impacts modularity (data 

moved out of API 
specification to workflows)

Storing data in workflows
(some platforms provide a workflow system to connect multiple functions together)

Locations to store data: 
- Current workflow state (as in a state machine)
- Parameters forwarded from function to function
- Platform managed workflow context



6.10 Every method to externalize state uses an external storage
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All observed practical implementations of the described methods 
under the hood externalize state in an external API

Example: “Azure Functions” and 
“Azure Functions Durable Entities”

Current state is saved in:

Example: Invocations and their 
parameters inside “OpenWhisk 
Sequences” are stored in CouchDB.



7. Serverless 
Trilemma



7.1 Double billing
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If functions invoke other functions synchronously, the time is billed twice

billed_duration = idle + workA + workB

- applies only if billing is based 
on function execution time

- consumer also blocks a 
concurrency slot in the function 
instance



7.2 Solution A: Inline producer code
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Problems
● Knowledge of internal 

programming of Producer required
● API of Producer not used anymore

billed_duration = workA + workB

→ Double billing avoided

→ Black-Box principle of 
    producer violated



7.3 Solution B: Asynchronous split off
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Invoke other functions asynchronously

Producer decoupled, 
Consumer missing 
partial result

→ Double billing avoided

→ Consumer can’t produce same result as before

→ Consumer can’t be a substitutable part of a composition 
     anymore, because it doesn’t behave identical to an
     atomic function
   
→ If intermediate result is not required, 
     solution can be still suitable 
     (for example when sending an email notification)

Note: 
 - Waiting for a result would be 
   synchronous operation with double billing



7.4 Serverless Trilemma
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Desired properties of serverless computing architectures:
1. Treat functions as black-box
2. No Double-Billing
3. Substitutable functions

Serverless Trilemma: In an event-driven system one of the properties must be violated



8. Workflows



8.1 ST-Safe workflows avoid serverless trilemma
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ST-Safe
● A serverless function orchestration system that satisfies all three conditions of the serverless 

trilemma is called ST-Safe

Workflow system provided by the serverless platform

Serverless trilemma can be applied “backwards”
● If a program doesn’t use ST-Safe workflows, it must violate one of the desired properties 

of the serverless trilemma



8.2 Workflows in Azure Functions
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Function Chaining

orchestrator 
function activities

→ Azure Durable functions 
    uses syntax known from 
    async programming

“await” pauses billed 
execution time



8.3 Workflows in Azure Functions - Replaying and Checkpoints
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orchestrator 
function activities

How it works:
● orchestrator function is invoked multiple times → replay
● if an activity already happened result is returned immediately → checkpoint from Azure Table Storage



9. Programming 
for serverless computing



9.1 Consequences of formal foundations paper
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Solution in short: 
ACID transactions in storage backend
+ locking/mutex mechanisms
+ idempotent functions

Function as a Service

• Execution of requests 
• not necessarily in order
• possibly in parallel
• may happen twice

(Retries of failed function invocations 
are usually a separated feature, which 
is turned off by default)

Usually given guarantee:
At-Most Once execution

Paper “Formal Foundations of Serverless Computing”
- Contains theoretical model of serverless computing

based on operational semantics
- does not fit perfectly to recent developments
- but introduces relevant properties programmers need 

to account for.



9.2 Command-Query-Responsibility-Segregation
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Idea
● Different models for reading and 

writing data

Command Model
● Scalable and schema-less 

database for creating and updating 
data fast

Query Model
● Relational database, normalized 

with schema for complex queries

Lambda function is triggered on each 
update and translates between the 
two data models!



10. Suitable workloads 
      and use cases



10.1 Relationship between Edge Computing and FaaS
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Functions have small size

The data a function operates 
on may be a lot bigger

Conclusions
• Distributing serverless functions world-wide is comparatively easy
• Moving data world-wide may be hard

    → Small deployment size makes serverless computing especially suitable for edge computing

Sources: [1]

(Small source-code files or 
small docker image layers)

Edge Computing
• Process data where it is generated and/or needed



10.2 Bursty traffic patterns
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Deployment with permanently provisioned resources

• permanent need for 10 servers 
  to account for all possible traffic spikes

Deployment with on-demand resource usage

• scaling down avoids idling servers

→ Billing based on milliseconds execution time 
makes serverless computing very suitable for 
bursty traffic patterns

Bursty traffic pattern (example with provisioned resources)



10.3 Exemplary cost calculation - provisioned vs serverless
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AWS Lambda vs AWS EC2 Instances

In this specific example
→ A high number of reqs/sec
   makes FaaS uneconomic in any case

In general
Serverless functions good for 

● Low total number of reqs/sec
● High idle times (or bursty traffic)
● Unpredictable scenarios

→ no sizing necessary beforehand



10.4 Predicting cost is hard in AWS Lambda
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  execution_time_price

+ price for number of requests

+ traffic price inbound and outbound a region

+ other services used

(Prices for EU Frankfurt)

For example: S3 Object Storage
● GB stored per month
● per 1000 requests
● Replication

AWS Lambda can easily cost more



11. Advantages, 
disadvantages, 
learnings



11.1 Complexity prevented from developers
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Complexity prevented from developers
● Managing horizontal scaling (K)
● Achieving high redundancy and availability K
● Evenly distributed load balancing K
● Performing rolling updates (K)
● No need for system upgrades K
● No infrastructure management K

K = Advantage already given by kubernetes
(K) = Advantage already given, but limited

Why using serverless computing at all?
     → small config file implicitly gives many features
     → new features



11.2 Using serverless computing enables features implicitly
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Less yaml, but implicitly more features like
- scale-to-zero
- on-demand resource usage
- revisions
- etc.

→ new projects can leverage these 
features without any effort



Many new features introduced. 
Example: Sophisticated Autoscaling in Knative

11.3 New features of serverless computing platforms
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11.4 Complexity added for developers
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Complexity added for developers
● New software and cli tools to learn
● Need to consider unique properties

○ Stateless
○ Cold-starts
○ Time and resource limitations
○ Serverless-trilemma

● Additional problems
○ Double-billing
○ Serverless trilemma
○ How and why to use workflows
○ New security vulnerabilities <- there are papers
○ Need to program event generators

● Less comfort
○ Harder debugging of applications



11.5 Operations when using FaaS
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FaaS software still requires operations:

Does using serverless computing in a public cloud mean we don’t need an operations team?  -> No

But usually cloud provided:

• Monitoring
• Logging
• Backup and Recovery strategy
• IT-Security (Intrusion detection, etc.)
• ...

• Firewall
• Reverse Proxy
• Load Balancers
• Cluster and Nodes
• ...



11.6 Total cost of ownership
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increased
● developers need to 

consider more 
concepts

reduced or increased
● depending on 

req/s, traffic used 
and storage used

reduced
● more tasks shifted to 

the cloud
● but operations team 

still necessary



11.7 New features of serverless computing platforms
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My conclusion:
- Making apps stateless is a good idea to automatically achieve horizontal scalability, 

but this is independent from serverless computing
- The technology serverless computing doesn’t add enough advantages compared to 

kubernetes to justify another complexity layer

- New and small projects can benefit from effortlessly usable features like automatic 
horizontal scaling



End of presentation

public | Richard Clauß | Serverless Computing 92

Thank you for your 
participation

Feel free to ask questions
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01.  Sources on the state of research (you of course do not need to read everything, this is just for interested people)

H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on serverless computing,” J Cloud Comp, vol. 10, no. 1, p. 39, Dec. 2021, doi: 
10.1186/s13677-021-00253-7.
(starting on page 16 in the section "Serverless computing challenges and issues (RQ7)" there is a good and concise overview of the open questions of the current state of research on serverless 
computing. The paper is from 2021 and therefore very current. Starting on page 19, there are also research questions)

A. Bocci, S. Forti, G.-L. Ferrari, and A. Brogi, “Secure FaaS orchestration in the fog: how far are we?,” Computing, vol. 103, no. 5, pp. 1025–1056, 
May 2021, doi: 10.1007/s00607-021-00924-y.
(Very good overview of selected current papers around the topic of serverless computing. Short paragraphs describe the content of each paper. I recommend reading chapters 4 and 5)

A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal Foundations of Serverless Computing,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 
1–26, Oct. 2019, doi: 10.1145/3360575.
(The paper defines Operational Semantics for Serverless Computing, highlighting a few specifics that derive from this theory for FaaS platforms.  First of interest are pages 4 and 5. Page 4 shows a short 
and a long source code. The long source code compensates for the problems of FaaS by writing more code. Which problems these are can be read in the following text.)

G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and 
Research,” 2017, doi: 10.13140/RG.2.2.15007.87206.
(The results of a conference on serverless computing. The text provides a few more practical ideas on the direction the technology might continue to take.)

A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in the fog: State of the art and open challenges,” Softw: Pract Exper, vol. 50, no. 
5, pp. 719–740, May 2020, doi: 10.1002/spe.2766.
(In edge or fog computing, there are a number of scattered servers to which one or more applications are to be deployed. The resulting "Fog Application Placement Problem (FAPP)" is a heavily 
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