
Author: Richard Clauß
Docent: Prof. Dr. Martin Leischner
Date: 06.12.2022

Serverless
Computing

Agenda
1. Introduction

2. Triggers

3. Interfaces to functions

4. Runtimes

5. Cold-Starts

6. Keeping state

7. Serverless Trilemma

8. Workflows

9. Programming for serverless computing

Agenda
10. Suitable workloads and use cases

11. Advantages, disadvantages, learnings

1. Introduction

1.1 What does “serverless” mean?

public | Richard Clauß | Serverless Computing 5

a) Serverless Architecture

Serverless Architecture
• multiple backends
• might span different cloud providers
• transparent and automatic scaling
• specific backend servers unknown

Sources: [1]

1.1 What does “serverless” mean?

public | Richard Clauß | Serverless Computing 6

b) Serverless as cloud-computing execution model

called “serverless computing” and
commodified as “Function as a Service”

Sources: [1]

1.1 What does “serverless” mean?

public | Richard Clauß | Serverless Computing 7

b) Serverless as cloud-computing execution model

called “serverless computing” and
commodified as “Function as a Service”

Are serverless functions just smaller pieces of Microservices?

Sources: [1]

1.1 What does “serverless” mean?

public | Richard Clauß | Serverless Computing 8

Which are then run on a runtime like usual PaaS Containers?

b) Serverless as cloud-computing execution model

called “serverless computing” and
commodified as “Function as a Service”

Sources: [1]

1.1 What does “serverless” mean?

public | Richard Clauß | Serverless Computing 9

Which are then run on a runtime like usual PaaS Containers?

Are serverless functions just smaller pieces of Microservices?

Sources: [1]

Yes, serverless functions are usually small fast starting CRI containers,
 but the technology in general does not demand that

1.2 Attempt to find the main properties of serverless computing

public | Richard Clauß | Serverless Computing 10

Scales transparently,
horizontally, automatically
and often down to zero

Different event
sources possible

May be kernel packet queue

Broadest thinkable serverless computing definition:
“Horizontally automatically scaling programs are executed in response to events”

1.3 FaaS vs. PaaS

public | Richard Clauß | Serverless Computing 11

How are PaaS and FaaS different if both are containers?

Sources: [1]

1.3 FaaS vs. PaaS

public | Richard Clauß | Serverless Computing 12

Function as a Service
• Runs containers (usually)
• Short lived = ephemeral = transient
• Stateless
• Scales automatically
• Event-driven → executed when triggered
• Can have side effects

Platform as a Service
• Runs containers (or on other runtimes)
• Long running (usually)
• Stateless or stateful
• Scales by configuration
• Event-driven or permanently running
• Can have side effects

Sources: [1]

implicit
need for
small size

Main benefits of serverless computing:
- More tasks automatically shifted to the cloud compared to PaaS
- Transparent automatic horizontal scaling makes the technology appear “serverless”
- In public clouds finely granular on-demand billing based on milliseconds execution time
- In public clouds no cost because of scale-to-zero

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 13

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 14

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 15

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 16

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 17

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 18

Function Logs first invocation
START RequestId: df51350a-dd12-46dd-95d0-d23ba7c524cd Version: $LATEST

END RequestId: df51350a-dd12-46dd-95d0-d23ba7c524cd

REPORT
RequestId: df51350a-dd12-46dd-95d0-d23ba7c524cd
Duration: 1.32 ms
Billed Duration: 2 ms
Memory Size: 128 MB
Max Memory Used: 50 MB
Init Duration: 132.34 ms

Request ID
df51350a-dd12-46dd-95d0-d23ba7c524cd

not billed

REPORT for second invocation:
Duration: 0.89 ms
Billed Duration: 1 ms
(“Init Duration” disappeared)

billed

http request

http request

1.4 AWS Lambda Example

public | Richard Clauß | Serverless Computing 19

User AgentAPI-Gateway

AWS Lambda
AWS Lambda

Function

json input json output
AWS Lambda

http response

API-Gateway

http response

1.5 Monoliths as serverless function

public | Richard Clauß | Serverless Computing 20

Example request to AWS Lambda:

One function can handle multiple subpaths
→ monolith possible in just one function

1.6 AWS Lambda Function

public | Richard Clauß | Serverless Computing 21

● App Name
● Function Name
● Memory Limit
● Amazon Features (Log Group, etc.)
● Custom Environment variables

Event = json Input Context

json output

using

1.7 Software and Providers

public | Richard Clauß | Serverless Computing 22

Commercial

● Amazon AWS Lambda

● IBM Cloud Functions

● Oracle Cloud Functions

● Google Cloud Functions

● Microsoft Azure Functions

● Cloudflare Workers

● Vercel Cloud Functions

● Tencent Cloud Functions

Open Source

● OpenWhisk (Apache-2.0 License)

● Fn (Apache-2.0 License)

● Knative (Apache-2.0 License)

● OpenFaaS (MIT License)

● Kubeless (Apache-2.0 License)

● Fission (Apache-2.0 License)

using

2. Triggers

2.1 Triggers in Amazon AWS Lambda

public | Richard Clauß | Serverless Computing 24

Invoke functions on Database updates

Consume real time data streams

Amazon AWS Lambda is highly integrated into the AWS Service Portfolio, Event Sources include:

Trigger on File manipulations in Object Storage

Sources: [2]

Message Queues and Work Queues

Amazon MQ -> Amazon MSK

External Events via Amazon EventBridge Scheduled Events (Cronjob) via CloudWatch Events

Amazon EventBridge Amazon EventBridge CloudWatch

2.2 Webhooks as event source

public | Richard Clauß | Serverless Computing 25

a) Webhooks

Sources: [3]

“Telegram, send me a http request, if my
bot received a new message”

2.3 Polling as event source

public | Richard Clauß | Serverless Computing 26

b) Polling

Sources: [3]

for example polling an RSS feed every 10 minutes

2.4 Permanent connections as event source

public | Richard Clauß | Serverless Computing 27

c) Connections Pattern

Sources: [3]

for example subscribing to an mqtt topic
(permanently running)

2.5 Any protocol can be connected to serverless computing

public | Richard Clauß | Serverless Computing 28Sources: [3]

Conclusion
● There are patterns to connect any stateless and stateful protocol to

serverless computing
● But this may result in performance penalties

or the necessity of a permanently running component

2.6 Synchronous and asynchronous invocations

public | Richard Clauß | Serverless Computing 29Sources: [4]

Synchronous Invocation
● Blocks until result is available

Sync Example (OpenWhisk)
wsk action invoke \
 /whisk.system/samples/greeting --result --blocking
{
 "payload": "Hello, World!"
}

Asynchronous Invocation
● Returns immediately and gives an

Activation ID
● Client can retrieve result later

Async Example (OpenWhisk)
wsk action invoke \
 /whisk.system/samples/greeting
ok: invoked /_/pythonfunction with id
733404104295414ab404104295c14ae2

3. Interfaces to
functions
(Programmers point of view)

3.1 Interfaces to functions

public | Richard Clauß | Serverless Computing 31

Question: How do programmers receive function invocations?

→ Answer depends on serverless computing implementation

3.2 Language-native map-like data structures

public | Richard Clauß | Serverless Computing 32

AWS Lambda

json input json output
AWS Lambda

Used in: OpenWhisk, AWS Lambda

a) Platform translates incoming events to json objects

3.2 Language-native map-like data structures

public | Richard Clauß | Serverless Computing 33

b) json objects are then deserialized to language-native map-like data structures

Go example from OpenWhisk:

3.3 json over file descriptors (for example stdin and stdout)

public | Richard Clauß | Serverless Computing 34

stdin stdout

Used in: OpenWhisk, OpenFaas

→ Arbitrary executables and bash scripts can be used as serverless functions

Executable

3.4 Language-specific runtime SDK

public | Richard Clauß | Serverless Computing 35

Used in: Fn, OpenFaas

Example from fn project:

3.5 Function receives http-requests on tcp port

public | Richard Clauß | Serverless Computing 36

http request

http response

Used in: Knative

Function is containerized web-server

port
8080

→ Developers can use their favourite web-server libraries
 (In my opinion the most modern approach)
→ Function invocation is no additional layer of complexity

Client

3.6 Software abstraction to well-known webserver library

public | Richard Clauß | Serverless Computing 37

Used in: Fission, OpenFaas, Knative functions → Developers can use their favourite web-server libraries
 (In my opinion the most modern approach)
→ abstraction needs to implement runtime specification,
 which is sometimes not as trivial as with knative

3.7 Summary for the function invocation interfaces

public | Richard Clauß | Serverless Computing 38

Summary
● There are many different ways how programmers receive function invocations
● Letting programmers use well-known web-server libraries in their favourite

language is the most modern approach used in fission, knative and openfaas

4. Runtimes

4.1 Deployment unit

public | Richard Clauß | Serverless Computing 40

There are two observed possibilities:
A) Function is deployed as a container image
B) Function is deployed as source-code file or archive containing source-code files

In case B, generic runtime containers are specialized with function code at runtime
→ Initialization effort contributes to cold-start time
→ Building a container image in the cluster after deployment would also be possible

Specialization
can not change

specialized
runtimes can’t be
reused for other
functions

4.2 Runtimes for programming languages

public | Richard Clauß | Serverless Computing 41

Runtimes are usually created at the level of programming languages

Official Fission “Environments”

→ Runtimes usually provide a few common libraries

4.3 OpenWhisk Python Runtime

public | Richard Clauß | Serverless Computing 42

(Code slightly shortened version of the original
OpenWhisk Python Runtime Implementation

Sources: [5]

4.3 OpenWhisk Python Runtime

public | Richard Clauß | Serverless Computing 43Sources: [5]

4.4 Consequences of OpenWhisks Implementation

public | Richard Clauß | Serverless Computing 44

Consequences of OpenWhisks Implementation
• Json is already parsed to native data structures
• Deserialization and Serialization means overhead

• One runtime serves exactly one action
• Runtimes can’t be reused to serve other actions

• Reexecuting same function is fast (warm start)
• First execution is delayed (cold start)

4.5 Limitations

public | Richard Clauß | Serverless Computing 45

Introduced Problem:
Programmers need to take limitations
into account which are specific to the
used runtime and software

Limitations in AWS Lambda:
● unlimited concurrency

(function scale first to region dependent
500-3000 concurrent instances, then 500 more
each minute)

● 10240 MiB max memory usage (def: 128 MiB)
● 900 sec max execution time (def: 3 sec)
● 6 MiB synchronous invocation payload
● 256 KiB asynchronous invocation payload

Sources: [6]

Limitations in OpenWhisk:

→ payload limits make some use cases hard to implement

4.6 Extending Runtimes

public | Richard Clauß | Serverless Computing 46

Extend Python Runtimes in OpenWhisk
1) virtualenv virtualenv
2) source virtualenv/bin/activate
3) pip install <dependency>
4) zip -r helloPython.zip virtualenv __main__.py
5) wsk action create helloPython --kind python:3 helloPython.zip

 faas_project
 ├── hello.py
 └── virtualenv

Sources: [7,8]

Runtimes can be extended
• Add new container layers
• Provide libraries in deployments

4.7 Relationship between serverless computing and container orchestration

public | Richard Clauß | Serverless Computing 47

● Scaling the number of runtime containers requires interfacing with container orchestration
● Most Self-Hosted serverless software supports natively

FaaS
Software

Kubernetes
Support

Helm Chart
available

OpenWhisk

Fn

Kubeless

OpenFaas

→ Other supported platforms are highly implementation dependent
→ Fission and Knative are integrated into Kubernetes with Custom Resource Definitions

4.8 Interface to runtime and whether it supports concurrent invocations

public | Richard Clauß | Serverless Computing 48

The serverless platform can of course handle more than one concurrent request.

So why does it matter if a function can be invoked concurrently multiple times for a single runtime?
→ Soft limits make it possible to completely avoid cold-starts during scaling out

 → Requests can be immediately answered without waiting for a new pod to
 become available, if runtimes can always tolerate one more request

5. Cold starts

5.1 Cold- and warm-starts

public | Richard Clauß | Serverless Computing 50Sources: [1]

Occurrence of cold-starts
● a) When no function instances are running

○ after scale-to-zero, failure or deployment
● b) During scaling out if all present function instances can’t serve more requests.

Cold-start
● Before a function invocation can be processed, a new function instance needs to be started

→ cold-start delay = initialization time + execution time

Warm-start
● The invocation can be forwarded to an already existing function instance with free capacity

→ warm-start delay = execution time

5.2 Avoiding cold-starts

public | Richard Clauß | Serverless Computing 51Sources: [1]

Occurrence of cold-starts
● a) When no function instances are running

○ after scale-to-zero, failure or deployment
● b) During scaling out if all present function instances can’t serve more requests.

Avoid case a)
● disable scale-to zero

and
● set minimum/initial number of function instances >= 1

5.2 Avoiding cold-starts

public | Richard Clauß | Serverless Computing 52Sources: [1]

Occurrence of cold-starts
● a) When no function instances are running

○ after scale-to-zero, failure or deployment
● b) During scaling out if all present function instances can’t serve more requests.

Avoid case b)
● always have more function instances than needed

○ so there is always an idling function instance available
 to process an event immediately

or
● have function instances, which support concurrent function invocations

 and do not set a hard-limit for concurrency
○ by using a soft-limit always one more invocation can be processed immediately
○ scaling is detached from function invocation and happens in the background

(“eventual scaling”)

5.3 Cold- vs. Prewarm- vs. Warm-start

public | Richard Clauß | Serverless Computing 53Sources: [9]

What needs to be done?

-> prewarming only possible when generic containers are specialized

5.4 Prewarm containers in OpenWhisk

public | Richard Clauß | Serverless Computing 54

OpenWhisks invoker launches prewarm containers to accelerate cold starts

6. Keeping state

6.1 Why serverless functions need to be stateless

public | Richard Clauß | Serverless Computing 56Sources: [1]

Platform can scale down automatically and transparently
● Content of memory can be removed any time

 → State needs to be externalized
 → Memory is still usable for temporary caching

6.2 Externalize state

public | Richard Clauß | Serverless Computing 57

Advantages
● Modular development of storage API
● Separated administration
● Separated scalability

Disadvantages
● Might need additional complexity like

locking mechanisms or ACID
transactions

External storage API

→ Suitable solution

6.3 Suitable database and storage APIs for FaaS

public | Richard Clauß | Serverless Computing 58

Properties of database APIs suitable for use with serverless computing
● Pay-per-use
● Stateless
● Fast (AWS bills idling)

○ No expensive handshakes
○ Sacrifice database normalization for speed

● Automatic Scaling
 → Same properties like those of FaaS functions themselves

6.4 AWS Aurora Provisioned vs. Serverless

59

Different pricing
+ Autoscales up and down
+ Stateless http “Data API”

• Relational Database
• Drop-In Replacement for MySQL and PostgreSQL

Amazon AWS Aurora

Billing:
• storage (per GiB/month)
• I/O rate (per 1 Mio req)
• instance size (per hour)
 (e.g. db.t3.medium = 0,082 USD/h)

Billing for
• storage (per GiB/month)
• I/O rate (per 1 Mio req)
• Aurora Capacity Unit (per hour)
 (1 ACU ~ 2GiB Memory usage)

AWS Aurora - Provisioned AWS Aurora - Serverless

Differences in Serverless

public | Richard Clauß | Serverless Computing

6.5 Actors model

public | Richard Clauß | Serverless Computing 60Sources: [10]

Actor Model

● Actor1 has an internal state
● Access to that internal state

only via messages

6.6 Entity functions

public | Richard Clauß | Serverless Computing 61Sources: [11]

Entity functions Ways to communicate
Signaling: fire-and-forget

→ write operations without confirmation

Call: blocking call, waiting for response
→ read and write operations

 (identical to normal synchronous APIs)● Entity functions have a persistent state
● Access to internal state only via event-driven messages
● Backend can be normal storage API

 (Practical example: Azure Functions Durable Entities)

6.7 Serverless computing platforms as entity functions

public | Richard Clauß | Serverless Computing 62

Serverless platforms together with asynchronous invocations can be
programmed to be an implementation of entity functions

6.8 Message-broker for asynchronous invocations

public | Richard Clauß | Serverless Computing 63

Not all platforms support asynchronous invocations
- But all platforms can be configured to receive events from a message broker

6.8 Message-broker for asynchronous invocations

public | Richard Clauß | Serverless Computing 64

Connecting a message broker to add the feature of
asynchronous invocations to a serverless platform

→ Also a possible implementation of entity functions

6.9 Store data using in a platform-native workflow system

public | Richard Clauß | Serverless Computing 65

Advantages
● Function instances use less

memory
● Implicit garbage collection
● No double-billing if workflows

are ST-safe (explained later)

Disadvantages
● Code needs to be platform

aware
● Impacts modularity (data

moved out of API
specification to workflows)

Storing data in workflows
(some platforms provide a workflow system to connect multiple functions together)

Locations to store data:
- Current workflow state (as in a state machine)
- Parameters forwarded from function to function
- Platform managed workflow context

6.10 Every method to externalize state uses an external storage

public | Richard Clauß | Serverless Computing 66Sources: [12]

All observed practical implementations of the described methods
under the hood externalize state in an external API

Example: “Azure Functions” and
“Azure Functions Durable Entities”

Current state is saved in:

Example: Invocations and their
parameters inside “OpenWhisk
Sequences” are stored in CouchDB.

7. Serverless
Trilemma

7.1 Double billing

public | Richard Clauß | Serverless Computing 68Sources: [13]

If functions invoke other functions synchronously, the time is billed twice

billed_duration = idle + workA + workB

- applies only if billing is based
on function execution time

- consumer also blocks a
concurrency slot in the function
instance

7.2 Solution A: Inline producer code

public | Richard Clauß | Serverless Computing 69Sources: [13]

Problems
● Knowledge of internal

programming of Producer required
● API of Producer not used anymore

billed_duration = workA + workB

→ Double billing avoided

→ Black-Box principle of
 producer violated

7.3 Solution B: Asynchronous split off

public | Richard Clauß | Serverless Computing 70Sources: [13]

Invoke other functions asynchronously

Producer decoupled,
Consumer missing
partial result

→ Double billing avoided

→ Consumer can’t produce same result as before

→ Consumer can’t be a substitutable part of a composition
 anymore, because it doesn’t behave identical to an
 atomic function

→ If intermediate result is not required,
 solution can be still suitable
 (for example when sending an email notification)

Note:
 - Waiting for a result would be
 synchronous operation with double billing

7.4 Serverless Trilemma

public | Richard Clauß | Serverless Computing 71Sources: [13]

Desired properties of serverless computing architectures:
1. Treat functions as black-box
2. No Double-Billing
3. Substitutable functions

Serverless Trilemma: In an event-driven system one of the properties must be violated

8. Workflows

8.1 ST-Safe workflows avoid serverless trilemma

public | Richard Clauß | Serverless Computing 73Sources: [13]

ST-Safe
● A serverless function orchestration system that satisfies all three conditions of the serverless

trilemma is called ST-Safe

Workflow system provided by the serverless platform

Serverless trilemma can be applied “backwards”
● If a program doesn’t use ST-Safe workflows, it must violate one of the desired properties

of the serverless trilemma

8.2 Workflows in Azure Functions

public | Richard Clauß | Serverless Computing 74Sources: [14]

Function Chaining

orchestrator
function activities

→ Azure Durable functions
 uses syntax known from
 async programming

“await” pauses billed
execution time

8.3 Workflows in Azure Functions - Replaying and Checkpoints

public | Richard Clauß | Serverless Computing 75Sources: [14]

orchestrator
function activities

How it works:
● orchestrator function is invoked multiple times → replay
● if an activity already happened result is returned immediately → checkpoint from Azure Table Storage

9. Programming
for serverless computing

9.1 Consequences of formal foundations paper

public | Richard Clauß | Serverless Computing 77Sources: [15]

Solution in short:
ACID transactions in storage backend
+ locking/mutex mechanisms
+ idempotent functions

Function as a Service

• Execution of requests
• not necessarily in order
• possibly in parallel
• may happen twice

(Retries of failed function invocations
are usually a separated feature, which
is turned off by default)

Usually given guarantee:
At-Most Once execution

Paper “Formal Foundations of Serverless Computing”
- Contains theoretical model of serverless computing

based on operational semantics
- does not fit perfectly to recent developments
- but introduces relevant properties programmers need

to account for.

9.2 Command-Query-Responsibility-Segregation

public | Richard Clauß | Serverless Computing 78Sources: [16]

Idea
● Different models for reading and

writing data

Command Model
● Scalable and schema-less

database for creating and updating
data fast

Query Model
● Relational database, normalized

with schema for complex queries

Lambda function is triggered on each
update and translates between the
two data models!

10. Suitable workloads
 and use cases

10.1 Relationship between Edge Computing and FaaS

public | Richard Clauß | Serverless Computing 80

Functions have small size

The data a function operates
on may be a lot bigger

Conclusions
• Distributing serverless functions world-wide is comparatively easy
• Moving data world-wide may be hard

 → Small deployment size makes serverless computing especially suitable for edge computing

Sources: [1]

(Small source-code files or
small docker image layers)

Edge Computing
• Process data where it is generated and/or needed

10.2 Bursty traffic patterns

public | Richard Clauß | Serverless Computing 81Sources: [1]

Deployment with permanently provisioned resources

• permanent need for 10 servers
 to account for all possible traffic spikes

Deployment with on-demand resource usage

• scaling down avoids idling servers

→ Billing based on milliseconds execution time
makes serverless computing very suitable for
bursty traffic patterns

Bursty traffic pattern (example with provisioned resources)

10.3 Exemplary cost calculation - provisioned vs serverless

public | Richard Clauß | Serverless Computing 82Sources: [17]

AWS Lambda vs AWS EC2 Instances

In this specific example
→ A high number of reqs/sec
 makes FaaS uneconomic in any case

In general
Serverless functions good for

● Low total number of reqs/sec
● High idle times (or bursty traffic)
● Unpredictable scenarios

→ no sizing necessary beforehand

10.4 Predicting cost is hard in AWS Lambda

public | Richard Clauß | Serverless Computing 83Sources: [18,19]

 execution_time_price

+ price for number of requests

+ traffic price inbound and outbound a region

+ other services used

(Prices for EU Frankfurt)

For example: S3 Object Storage
● GB stored per month
● per 1000 requests
● Replication

AWS Lambda can easily cost more

11. Advantages,
disadvantages,
learnings

11.1 Complexity prevented from developers

public | Richard Clauß | 5G Core and Serverless Computing 85

Complexity prevented from developers
● Managing horizontal scaling (K)
● Achieving high redundancy and availability K
● Evenly distributed load balancing K
● Performing rolling updates (K)
● No need for system upgrades K
● No infrastructure management K

K = Advantage already given by kubernetes
(K) = Advantage already given, but limited

Why using serverless computing at all?
 → small config file implicitly gives many features
 → new features

11.2 Using serverless computing enables features implicitly

public | Richard Clauß | Serverless Computing 86

Less yaml, but implicitly more features like
- scale-to-zero
- on-demand resource usage
- revisions
- etc.

→ new projects can leverage these
features without any effort

Many new features introduced.
Example: Sophisticated Autoscaling in Knative

11.3 New features of serverless computing platforms

public | Richard Clauß | Serverless Computing 87

11.4 Complexity added for developers

public | Richard Clauß | Serverless Computing 88

Complexity added for developers
● New software and cli tools to learn
● Need to consider unique properties

○ Stateless
○ Cold-starts
○ Time and resource limitations
○ Serverless-trilemma

● Additional problems
○ Double-billing
○ Serverless trilemma
○ How and why to use workflows
○ New security vulnerabilities <- there are papers
○ Need to program event generators

● Less comfort
○ Harder debugging of applications

11.5 Operations when using FaaS

public | Richard Clauß | Serverless Computing 89

FaaS software still requires operations:

Does using serverless computing in a public cloud mean we don’t need an operations team? -> No

But usually cloud provided:

• Monitoring
• Logging
• Backup and Recovery strategy
• IT-Security (Intrusion detection, etc.)
• ...

• Firewall
• Reverse Proxy
• Load Balancers
• Cluster and Nodes
• ...

11.6 Total cost of ownership

public | Richard Clauß | Serverless Computing 90

increased
● developers need to

consider more
concepts

reduced or increased
● depending on

req/s, traffic used
and storage used

reduced
● more tasks shifted to

the cloud
● but operations team

still necessary

11.7 New features of serverless computing platforms

public | Richard Clauß | Serverless Computing 91

My conclusion:
- Making apps stateless is a good idea to automatically achieve horizontal scalability,

but this is independent from serverless computing
- The technology serverless computing doesn’t add enough advantages compared to

kubernetes to justify another complexity layer

- New and small projects can benefit from effortlessly usable features like automatic
horizontal scaling

End of presentation

public | Richard Clauß | Serverless Computing 92

Thank you for your
participation

Feel free to ask questions

Sources (1 / 4)

93

01. Sources on the state of research (you of course do not need to read everything, this is just for interested people)

H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on serverless computing,” J Cloud Comp, vol. 10, no. 1, p. 39, Dec. 2021, doi:
10.1186/s13677-021-00253-7.
(starting on page 16 in the section "Serverless computing challenges and issues (RQ7)" there is a good and concise overview of the open questions of the current state of research on serverless
computing. The paper is from 2021 and therefore very current. Starting on page 19, there are also research questions)

A. Bocci, S. Forti, G.-L. Ferrari, and A. Brogi, “Secure FaaS orchestration in the fog: how far are we?,” Computing, vol. 103, no. 5, pp. 1025–1056,
May 2021, doi: 10.1007/s00607-021-00924-y.
(Very good overview of selected current papers around the topic of serverless computing. Short paragraphs describe the content of each paper. I recommend reading chapters 4 and 5)

A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal Foundations of Serverless Computing,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp.
1–26, Oct. 2019, doi: 10.1145/3360575.
(The paper defines Operational Semantics for Serverless Computing, highlighting a few specifics that derive from this theory for FaaS platforms. First of interest are pages 4 and 5. Page 4 shows a short
and a long source code. The long source code compensates for the problems of FaaS by writing more code. Which problems these are can be read in the following text.)

G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and
Research,” 2017, doi: 10.13140/RG.2.2.15007.87206.
(The results of a conference on serverless computing. The text provides a few more practical ideas on the direction the technology might continue to take.)

A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in the fog: State of the art and open challenges,” Softw: Pract Exper, vol. 50, no.
5, pp. 719–740, May 2020, doi: 10.1002/spe.2766.
(In edge or fog computing, there are a number of scattered servers to which one or more applications are to be deployed. The resulting "Fog Application Placement Problem (FAPP)" is a heavily
researched topic. The paper shows on page 5 a review of the various papers that attempt to solve the FAPP problem.)

public | Richard Clauß | Serverless Computing

Sources (2 / 4)

94

E. Jonas et al., “Cloud Programming Simplified: A Berkeley View on Serverless Computing.” arXiv, Feb. 09, 2019. Accessed: Dec. 05, 2022.
[Online]. Available: http://arxiv.org/abs/1902.03383
(General evaluation of the technology and its current problems)

P. Aditya et al., "Will Serverless Computing Revolutionize NFV?," in Proceedings of the IEEE, vol. 107, no. 4, pp. 667-678, April 2019, doi:
10.1109/JPROC.2019.2898101.
(The paper is about running virtualized network functions like those of the 5G core on serverless computing.)

H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless Computing: A Survey of Opportunities, Challenges, and Applications,” ACM Comput. Surv.,
vol. 54, no. 11s, pp. 1–32, Jan. 2022, doi: 10.1145/3510611.
(Another overview)

02. Amazon (Hrsg.). (.). aws. Abgerufen am 9. Juni 2021
von https://docs.aws.amazon.com/lambda/latest/dg/invocation-eventsourcemapping.html

03. GitHub. (17. Mai 2010). Abgerufen am 9. Juni 2021
von https://github.com/apache/openwhisk/blob/master/docs/feeds.md.

04. GitHub. (17. Mai 2010). Abgerufen am 9. Juni 2021
von https://github.com/apache/openwhisk/blob/master/docs/actions.md

public | Richard Clauß | Serverless Computing

Sources (3 / 4)

95

05. GitHub. (19. Februar 2020). Abgerufen am 9. Juni 2021 von
https://github.com/apache/openwhisk-runtime-python/blob/master/core/python3ActionLoop/lib/launcher.py

06. Sciabarrà, M. (2021). Oreilly. Abgerufen am 9. Juni 2021 von
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html

07. Amazon (Hrsg.). (kein Datum). aws. Abgerufen am 9. Juni 2021 von
https://aws.amazon.com/de/blogs/compute/working-with-aws-lambda-and-lambda-layers-in-aws-sam/

08. Amazon (Hrsg.). (kein Datum). aws. Abgerufen am 9. Juni 2021 von
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md

09. Thömmes, M. (20. April 2017). Apache OpenWhisk. Abgerufen am 9. Juni 2021 von
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0

10. Storti, B. (09. Juli 2015). brianstorti.com. Abgerufen am 23. Juni 2021 von
https://www.brianstorti.com/the-actor-model/

11. Microsoft (Hrsg.). (kein Datum). aws. Abgerufen am 9. Juni 2021 von
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp

12. Microsoft (Hrsg.). (kein Datum). aws. Abgerufen am 9. Juni 2021 von
https://github.com/Azure/durabletask/wiki/Core-Concepts

public | Richard Clauß | Serverless Computing

https://github.com/apache/openwhisk-runtime-python/blob/master/core/python3ActionLoop/lib/launcher.py
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/ch01.html
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://www.brianstorti.com/the-actor-model/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities?tabs=csharp

Sources (4 / 4)

96

13. Agarwal, A., Choudhary, C., & Bhagat, S. (2018). The Serverless Trilemma - Function Composition for Serverless
Computing. Washington: University of Washington .

14. GitHub (02. Juli 2020). Abgerufen am 23. Juni 2021 von
https://github.com/Azure/durabletask/wiki/Writing-Task-Orchestrations

15. Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal foundations of serverless computing.
Proc. ACM Program. Lang. 3, OOPSLA, Article 149 (October 2019), 26 pages. https://doi.org/10.1145/3360575

16. Amazon (Hrsg.). (kein Datum). aws. Abgerufen am 23. Juni 2021 von
https://docs.aws.amazon.com/whitepapers/latest/modern-application-development-on-aws/command-query-responsibility-segrega
tion.html

17. Rodríguez, Á. A. (9. Dezember 2020). BBVA. Abgerufen am 9. Juni 2021 von
https://www.bbva.com/en/economics-of-serverless/

18. Amazon (Hrsg.). (kein Datum). aws. Abgerufen am 23. Juni 2021 von https://aws.amazon.com/lambda/pricing/?nc1=h_ls

19. Amazon (Hrsg.). (kein Datum). aws. Abgerufen am 23. Juni 2021 von https://aws.amazon.com/de/s3/pricing/

public | Richard Clauß | Serverless Computing

https://doi.org/10.1145/3360575
https://docs.aws.amazon.com/whitepapers/latest/modern-application-development-on-aws/command-query-responsibility-segregation.html
https://docs.aws.amazon.com/whitepapers/latest/modern-application-development-on-aws/command-query-responsibility-segregation.html

